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We consider a sheet flow in which heavy grains near a packed bed interact with a
unidirectional turbulent shear flow of a fluid. We focus on sheet flows in which the
particles are supported by their collisional interactions rather than by the velocity
fluctuations of the turbulent fluid and introduce what we believe to be the simplest
theory for the collisional regime that captures its essential features.

We employ a relatively simple model of the turbulent shearing of the fluid and use
kinetic theory for the collisional grain flow to predict profiles of the mean fluid velocity,
the mean particle velocity, the particle concentration, and the strength of the particle
velocity fluctuations within the sheet. These profiles are obtained as solutions to the
equations of balance of fluid and particle momentum and particle fluctuation energy
over a range of Shields parameters between 0.5 and 2.5. We compare the predicted
thickness of the concentrated region and the predicted features of the profile of the
mean fluid velocity with those measured by Sumer et al. (1996). In addition, we
calculate the volume flux of particles in the sheet as a function of Shields parameter.

Finally, we apply the theory to sand grains in air for the conditions of a sandstorm
and calculate profiles of particle concentration, velocity, and local volume flux.

1. Introduction

We describe a collisional flow of heavy grains that is important in a regime of
sediment transport called sheet flow. In sheet flow, a highly concentrated region of
grains near a bed interacts with a unidirectional or oscillatory turbulent shearing flow
of a fluid. Particles are supported against gravity by collisional interactions with each
other and by interactions with the velocity fluctuations of the turbulent fluid. Sheet
flows tend to be rather extreme events in that they are associated with relatively high
values of the turbulent shear stress. However, they are important because they are
responsible for the transport of large amounts of sediment. Sheet flows have been
studied in laboratory experiments in flumes or water tunnels by Wilson (1966, 1989),
Sawamoto & Yamashita (1987), Asano (1992), Nnadi & Wilson (1992), Ribberink &
Al-Salem (1995), and Sumer et al. (1996).

In this paper, we focus on sheet flows in which the particles are supported by their
collisional interactions rather than by the turbulent velocity fluctuations of the fluid.
As Sumer et al. (1996) point out, and illustrate using their experimental data, a regime
dominated by collisions exists for particles that are so heavy that their fall velocity
exceeds the friction velocity of the turbulent shear at the bed. Consequently, we restrict
attention to situations in which the turbulent shear flow is strong enough to drive the



30 J. T. Jenkins and D. M. Hanes

particles into collisions with each other but not so strong that the turbulent velocity
fluctuations play an important role in their suspension. In subsequent studies, we hope
to incorporate the suspension of particles due to the turbulent velocity fluctuations.
Here, we introduce what we believe to be the simplest theory for the collisional regime
that captures its essential features.

We consider a steady, fully developed, unidirectional flow of heavy grains and fluid
in a region of high solids concentration near a stationary, horizontal bed. The grains
in the bed are so densely packed that they cannot participate in the mean motion.
Above the bed is a region of grains that are forced into collisions by a rapid mean
shearing flow of the particles. This shearing flow of the particles is driven by the drag
associated with the difference in the mean velocity of the fluid and the particles. The
fluid flow in the turbulent boundary layer is forced by a distant turbulent shear stress
associated with pressure gradients in the flow far from the bed.

We employ a relatively simple model of the turbulent shearing of the fluid and use
kinetic theory for the rapid grain flow (e.g. Jenkins 1987; Richman & Marciniec 1990)
to predict profiles of the mean fluid velocity, the mean particle velocity, the particle
concentration, and the strength of the particle velocity fluctuations within the sheet.
These profiles are obtained as solutions to the equations of balance of fluid and particle
momentum and particle fluctuation energy over a range of strengths of the turbulent
shear flow. The measure of the strength of the turbulent shear flow is the Shields
parameter – the ratio of the distant turbulent shear stress to the buoyant weight of a
unit area of particle material one diameter thick. We generate solutions for Shields
parameters between 0.5 and 2.5, corresponding roughly to the range of Shields
parameters in the sheet flows that Sumer et al. (1996) characterize as collisional for
their largest particles.

We compare the predicted thickness of the concentrated region and the predicted
features of the profile of the mean fluid velocity with those measured by Sumer et al.
(1996). In addition, we calculate the volume flux of particles in the sheet as a function
of the Shields parameter. We also apply the theory to sheets of sand in air that are
observed in those sandstorms that involve high enough winds and sufficiently massive
grains.

By employing kinetic theory for the collisional interactions of the particle phase, we
improve on earlier analyses of sheet flows by Hanes & Bowen (1985), Hanes (1986),
and Wilson (1984, 1987, 1988, 1989). These were based on Bagnold’s (1954) relation
between the mean particle shear stress and the particle pressure in steady, simple shear
and required that the particle concentration profile be specified in advance. Here, we
relate the particle pressure to the strength of the particle velocity fluctuations and, in
doing so, introduce the possibility of predicting the profile of the particle concentration
as part of the solution of the governing equations.

2. Theory

We consider the relatively dense region of rapidly flowing, colliding grains driven by
drag forces associated with a turbulent shearing flow of the fluid surrounding them. We
refer to this region as the sheet. The flow of the mixture of particles and fluid in the
sheet is assumed to be, on average, steady and fully developed. The grains are taken
to be identical spherical particles of diameter D composed of a material of mass density
ρ
s
. The energy lost in a collision between two spheres is characterized in terms of an

effective coefficient of restitution e. The fluid is assumed to have a mass density ρ
f
and

a viscosity µ
f
.
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We adopt a coordinate system with the x-axis in the direction of flow and the y-axis
pointing vertically upward. The bottom of the sheet (the top of the bed) is taken to be
at y¯ 0. The x-component of the mean turbulent fluid velocity is U, the volume
fraction, or concentration, of the particles is ν, the x-component of the mean particle
velocity is u, and the mean square of the particle velocity fluctuations is 3T. Then
3ρ

s
νT}2 is the kinetic energy per unit volume associated with the velocity fluctuations

of the particles. When the flow is steady and fully developed, these fields are functions
of y alone.

We assume that the collisional exchange of momentum and energy between particles
dominates that associated with their viscous interaction. These exchanges may take
place directly from particle to particle through contact at asperities or through
localized transients in fluid pressure in the squeeze film between particles. Regimes of
sediment transport in which collisional interactions play a dominant role are somewhat
special ; they typically involve relatively massive particles driven by turbulent shearing
flows that are strong enough to drive the collisions but not so strong that turbulent
suspension is also important. As a consequence, after completing any calculation in the
context of the model, we check to see that collisions do, in fact, play the dominant role.

The vertical component of the balance of linear momentum for the particle phase
requires that the gradient in the particle pressure P balance the buoyant weight of a
unit volume of particles :

dP

dy
¯®(ρ

s
®ρ

f
) νg, (1)

where g is the gravitational acceleration. The constitutive relation for the particle
pressure is taken to be that for a dense molecular gas (Chapman & Cowling 1970, Sec.
16.33) :

P¯ ρ
s
ν(14G )T, (2)

with G(ν)3 νg
!
(ν), where

g
!
(ν)3

(2®ν)

2(1®ν)$
(3)

is the concentration dependence of the radial distribution function for a pair of
colliding particles as determined in numerical simulations by Carnahan & Starling
(1979).

The profile of the particle concentration may be obtained by integrating (1) together
with the equations that determine the spatial variation of T. In the context of sediment
transport, the capacity to predict concentration profiles is a new feature of the
modelling. It is introduced by employing a formulation that involves a measure of the
strength of the particle velocity fluctuations and a means to determine its spatial
variation.

The horizontal component of the balance of linear momentum for the particle phase
requires that the gradient in the particle shear stress S balance the drag force per unit
volume of the mixture:

dS

dy
¯®

ρ
f
νC

D
(U®u), (4)

where

C3 0 3

10
[(U®u)#3T ]"/#18.3

µ
f

ρ
f
D1

1

(1®ν)$."
. (5)

The drag force is the average over particle velocities of that proposed by Dallavalle
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(1943) for a single particle (e.g. Graf 1984). It has been extended to apply to
concentrated systems by incorporating the concentration dependence suggested by
Richardson & Zaki (1954). The averaging introduces the factor of 3T, the mean square
of the particle velocity fluctuations.

The constitutive relation for the particle shear stress is taken to be that for a dense
molecular gas (Chapman & Cowling 1970, Sec. 16.41) :

S¯αE
du

dy
, (6)

where

α3
8Dρ

s
νGT "/#

5π"/#
and E3 1

π

12 01
5

8G1
#

. (7)

The average number of collisions per unit time per unit volume is 90α}πρ
s
D&.

As in other problems involving steady, fully developed shearing of granular
materials (e.g. Richman & Marciniec 1990), it is convenient for the interpretation of the
physics to express the governing equations for the particle phase in terms of the ratio
of the particle shear stress and the particle pressure. To this end, we write

P¯ 4ρ
s
νGFT, with F3 1

1

4G
, (8)

and use this to express α in terms of P :

α¯
2DP

5π"/#FT "/#
. (9)

Then, when we solve (6) for the derivative of u and use (9) in the result, we may write
the equation governing the variation of the mean particle velocity in the form

du

dy
¯

5π"/#

2

F

E

T "/#

D

S

P
. (10)

In the derivation of the kinetic theory, it is assumed that the product of the derivative
of u and the ratio of D to T "/# is small ; however, the presence of small numerical
coefficients permits the theory to apply to situations in which this produce is of order
unity.

The balance of particle fluctuation energy is the analogue of that for the energy of
the velocity fluctuations of the molecules of a dense gas (Chapman & Cowling 1970,
Sec. 11.24). For inelastic particles, it requires that the gradient of the vertical
component Q of the flux of fluctuation energy balance the net rate of production of
fluctuation energy per unit volume of the mixture:

dQ

dy
¯S

du

dy
®γ, (11)

where the net rate of production is the difference between the rate of working of the
particle shear stress through the mean shear rate, and the rate of collisional dissipation
γ. Particles are driven into collisions by the mean motion, creating fluctuation energy;
while the inelasticity of the collisions dissipates fluctuation energy into true thermal
energy.
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The constitutive relation for the flux of particle fluctuation energy is taken to be that
for a dense molecular gas (Chapman & Cowling 1970, Sec. 16.42) :

Q¯®
5

2
αM

dT

dy
, (12)

where

M3 1
9π

32 01
5π

12G1
#

. (13)

The rate of collisional dissipation per unit volume may be calculated using the
Maxwellian velocity distribution function. It is (e.g. Jenkins & Savage 1983)

γ¯
15α(1®e)T

D#

. (14)

On average, a particle enters a collision with an amount of fluctuation energy equal to
πρ

s
D$T}4 and loses 1®e of it ; there are 90α}πρ

s
D& such collisions per unit time per

unit volume.
We recall that we have neglected any forces exerted on the particles by the turbulent

velocity fluctuations of the fluid. The correlation between the velocity fluctuations of
the fluid and the concentration fluctuations of the particles provides an additional
mechanism for suspending the particles (McTigue 1981). In most of a flow in the
collisional regime, the momentum of the particles is so large relative to that of the
energy-containing eddies of the fluid that the particles can traverse the eddies without
being influenced by them. However, because of the increase of the size of the energy-
containing eddies with distance from the bed, this is less likely to be true in the parts
of the flow further from the bed, even in the collisional regime.

Also, we have ignored any viscous dissipation of energy due to the fluctuations in
particle velocity with respect to the mean velocity of the fluid. We anticipate that in
these strongly sheared flows, collisional dissipation will dominate viscous dissipation in
all but the region of lowest concentration near the top of the sheet. We return to a
consideration of this assumption after generating solutions for the sheet flow.

With (10) and (14), we may rewrite equation (11) for the energy flux as

dQ

dy
¯

6

π"/#
9 5π

12E 0
FS

P 1
#

®(1®e):PT "/#

DF
(15)

and, upon inverting (12) and employing (9), we obtain the corresponding first-order
differential equation for T :

dT

dy
¯®π"/#

F

M

T "/#Q

DP
. (16)

We turn next to describing the turbulent shearing of the fluid. In modelling the flow
of the particles, we have accounted for the drag associated with the difference between
the mean velocity of the fluid and mean velocity of the particles. There is an equal and
opposite drag of the particles on the fluid, so that the total shear stress in the mixture
is constant. Because we have neglected the suspended load, we can assume that at some
distance from the bed, the concentration of particles in the flow vanishes and the shear
stress in the fluid approaches a constant, say S*. In this context, the entire region of
consideration is small compared to the extent of the clear fluid above; so, under the
usual boundary layer assumptions, the horizontal pressure gradient does not
significantly alter the shear stress. Then, because the balance of horizontal momentum
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for the mixture requires that the total shear stress in the mixture is constant, the shear
stress in the fluid is S*®S. We note that the distant shear stress S*, when made
dimensionless in a way to be introduced shortly, becomes the Shields parameter.

We relate the shear stress in the fluid to the gradient in the average velocity of the
fluid through a viscosity µ

t
, in which the mixing length is proportional to the distance

from the wall and includes a correction due to the density stratification of the mixture
that is associated with the profile of particle concentration (e.g. Rodi 1984) :

µ
t
¯ ρ

f
(1®ν) κ#y#(1®7R

i
)# )dU

dy ) , (17)

where κ¯ 0.41 is Karman’s constant and R
i
is the Richardson number, defined here

in terms of the mixture density ρ3 ρ
s
νρ

f
(1®ν) and, for simplicity, the mean fluid

velocity, rather than the mixture fluid velocity, by

R
i
3®

g

ρ 9
dρ

dy50
dU

dy1
#: . (18)

The variation of the mean velocity of the turbulent fluid is, then, governed by

dU

dy
¯ 0 S*®S

ρ
f
(1®ν)1

"/# 1

2κy
9 S*®S

ρ
f
(1®ν)

1

(2κy)#
®7

g

ρ

dρ

dy:
"/#

. (19)

Without the correction for density stratification, the predicted profiles of fluid velocity,
particle velocity, and particle concentration would result in Richardson numbers so
high that the gravitational forces associated with the stratification would suppress the
turbulence throughout much of the sheet.

At the stationary bed, we take U¯ 0 and eliminate the logarithmic singularity in the
turbulent velocity profile by replacing the turbulent viscosity with the molecular
viscosity at those point near the bed where the latter exceeds the former. In this fashion,
we incorporate an abrupt transition to a viscous sublayer very near the stationary bed.

For boundary conditions on the particle phase at the bottom of the sheet, we employ
those developed by Jenkins & Askari (1991) at the surface of a dense bed of colliding
particles. They first assume that at the surface, the concentration of grains in the flow
is that of a loose random packing, ν¯ 0.55. This is the most concentrated random
packing of identical spheres that can be sheared without it expanding (Onada & Liniger
1990). Because the grains at the surface of the bed may be eroded into the flow, Jenkins
& Askari take the mean velocity of the grains relative to the bed to be zero.

Finally, Jenkins & Askari consider the transfer of particle fluctuation energy at the
surface of the bed. They assume that purely collisional interactions between grains can
persist through a depth of several grain diameters into the bed and that below this, the
interparticle forces are transmitted through more enduring contacts. They solve the
energy balance (11) within the region of colliding grains in the bed and determine
the rate at which the energy of the particle velocity fluctuations is dissipated at the bed.
The resulting condition on the energy flux in the flow at the bed is

Q¯®012

π
M(1®e)1"/#PT "/#. (20)

Near the upper surface of the bed, the particle shear stress is supported by the
collisional exchange of momentum between particles. The shear stress results from the
distortion of the relative positions of nearest neighbours associated with a mean
shearing strain in the bed. This shear stress is not specified at the outset, but is given
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as part of the solution of the boundary value problem. Neither is the strength of the
velocity fluctuations at the bed specified in advance and, as a consequence, neither is
the particle pressure. These, too, are delivered as part of the solution. Because the
particle shear stress and the particle pressure are not known at the bed, it is not possible
to specify their ratio as a condition for yielding there. We regard this as being
appropriate ; the bed can, after all, support any stress ratio below that at which it yields.
We assume that in the steady state, the yield stress of the bed is not exceeded.

We next consider the conditions to be imposed far from the bed. Here, because we
neglect any suspension of particles, it is natural to require that ν goes to zero. However,
in this limit, the coefficients governing the transport of tangential momentum and
fluctuation energy in the particle phase do not vanish. Consequently, when we assume
that Q and S vanish with distance from the bed, we must satisfy these conditions in a
slightly artificial way. We require that the spatial derivatives of u and T vanish.

If, following Tsao & Koch (1995), we had considered the viscous dissipation of the
energy associated with the fluctuations in particle velocity with respect to the mean
turbulent flow, this mechanism would have been available to quench the velocity
fluctuations at low volume fraction and large mean free paths. When properly
incorporated into the balance of particle fluctuation energy, it would allow us to
impose what might be regarded as the more plausible condition that T vanishes as
distance from the bed increases.

However, in the dilute region near the top of the sheet, we should also consider the
influence on the particles of the turbulent velocity fluctuations of the fluid and the
additional sources of vertical momentum and fluctuation energy for the particle phase
associated with these. The source of vertical momentum, considered in some detail by
McTigue (1981), would balance the weight of the particles in the suspended load. The
source of energy, for which there is as yet no satisfactory model, would serve to
maintain the fluctuation energy of the particles in the absence of collisions and against
the viscous dissipation.

Consequently, in order to correctly describe the energy of the particle velocity
fluctuations in the dilute region near the top of the sheet, concentration fluctuations in
the particle phase must be considered, both a sink and a source of energy must be
incorporated into the energy balance for the particles, and, for consistency, a balance
of energy for the turbulent velocity fluctuations must be employed. Here, we defer
consideration of these and retain the more artificial boundary conditions at the top of
the sheet.

We next wish to motivate our phrasing the problem on an interval whose extent is
to be determined as part of the solution. When the particle phase is dilute, as it is at
some distance away from the bed, the equations governing the fluctuation energy of the
particles can be written in a relatively simple form. As ν becomes small,

G¯ ν, F¯
1

4ν
, E¯

π

12 0
5

8ν1
#

, M¯
9π

32 0
5

12ν1
#

. (21)

In this limit, (15) and (16) become

dQ

dy
¯

24

π"/#
945 0

S

P1
#

®(1®e): ρs
ν#T $/#

D
(22)

and

dT

dy
¯®

128

25π"/#

Q

ρ
s
DT "/#

. (23)
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In (22) and (23), we introduce the new dependent variable w3T "/# and use (1) to
change the independent variable from y to ξ3P}(ρ

s
®ρ

f
) gD. Then, the two equations

may be combined and written as

d

dξ 0ξ
dw

dξ1®ξk#w¯ 0, (24)

where

k#3
1536

25π 9(1®e)®
4

5 0
S

P1
#: . (25)

For constant stress ratio and k# positive, equation (24) is a Bessel equation of zero
order. It has solutions that satisfy boundary conditions at the two endpoints of a fixed
interval only for certain values of k ; alternatively, it has solutions for arbitrarily
specified k only for intervals of certain length. The indication is that we must consider
our more general problem as a nonlinear eigenvalue problem and formulate it on an
interval whose length L is to be determined as part of the solution.

We introduce the relative density s and the reduced gravity gW by

s3
ρ
s

ρ
f

and gW 3
ρ
s
®ρ

f

ρ
s

g¯
(s®1)

s
g, (26)

respectively, and non-dimensionalize length by D, velocity by (DgW )"/#, stress by ρ
s
DgW ,

and energy flux by ρ
s
(DgW )$/#. By employing the reduced gravity rather than the buoyant

gravity sgW in the non-dimensionalization, we are able to treat in the same way situations
in which buoyancy is important, e.g. plastic spheres in water, and situations in which
it is not, e.g. quartz spheres in air. In what follows, all quantities are dimensionless,
unless stated otherwise, and we denote dimensionless quantities by the same letter
which was previously used for their dimensional counterparts.

We focus attention on a fixed interval above the bed, scale length in this interval by
its dimensionless extent L, and call the scaled variable z. Scaling the interval allows us
to incorporate L into the system of differential equations and to determine it naturally
as part of the solution. We take z to increase downward from zero to one. Taking the
origin for z at the top of the sheet permits us to use the information regarding solutions
of the Bessel equation for the dilute flow to initiate solutions to the more general
problem.

We employ w3T "/# in the formulation rather than T because, as (24) exemplifies,
the energy equation, when expressed in terms of w, is linear. We call w the fluctuation
velocity. Where P appears in the dimensionless differential equations, it is assumed to
be expressed in terms of ν, and w through the dimensionless form of (2) :

P¯ 4νGFw#. (27)

This equation is also used to write (1) as a first-order equation for ν. The calculation
introduces a function H of ν :

H3
d

dν
(νGF ). (28)

Finally, we note that the dimensionless form of the drag coefficient,

C3 0 3

10
[(U®u)#3w#]"/#

18.3s"/#

R
f

1 1

(1®ν)$."
, (29)
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is written in terms of the fall Reynolds number R
f
,

R
f
3

ρ
f
D(DgW )"/#

µ
f

. (30)

The resulting first-order system governing the variation of the dimensionless
variables ν, S, u, Q, w, U and L with z on the interval 0% z% 1 is

ν«¯L0ν®π"/#FQ

Mw 1 νGF

HP
, (31)

S «¯L
C

s
ν(U®u), (32)

u«¯®L
5π"/#

2

F

E
w

S

P
, (33)

Q«¯L
6

π"/#
9(1®e)®

5π

12E 0
FS

P 1
#:Pw

F
, (34)

w«¯L
π"/#

2

F

M

Q

P
, (35)

U «¯®L9s(S*®S )

(1®ν) :
"/# 1

2κ(1®z)L
®L(s(S*®S )

(1®ν)

1

4κ#(1®z)#L#

7
s

[1(s®1)ν]L
ν«*"/#

(36)

and L«¯ 0, (37)

where a prime indicates a derivative with respect to z. We note that with the non-
dimensionalization that has been employed, the dimensionless distant stress S* is the
Shields parameter.

The boundary conditions at the top of the sheet flow, z¯ 0, are

ν¯ 0, Q¯ 0, S¯ 0. (38)

The boundary conditions at the surface of the bed, z¯ 1, are

ν¯ 0.55, Q¯®012

π
M(1®e)1"/#Pw, u¯ 0, U¯ 0. (39)

Solutions are parameterized by the Shields parameter S*, the fall Reynolds number
R

f
, the relative density s, and the coefficient of restitution e. We obtain numerical

solutions of the system of nonlinear differential equations (31)–(37) using the quasi-
linearization method discussed by Bellman & Kabala (1965) as outlined in the
Appendix.

3. Results and discussion

3.1. Large plastic spheres in water

Here the values of the Shields parameter S* and the specific gravity s for which we have
obtained solutions have been influenced by the observations of sheet flows by Sumer
et al. (1996). In part of their investigation, they employed a bed consisting of large,
relatively buoyant plastic particles and a turbulent flow of water in a flume that was
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F 1. (a) The dimensionless flux of fluctuation energy through the sheet for 3 mm plastic spheres
in water at values of the Shields parameter of 0.75, 1.50 and 2.25. The coefficient of restitution is 0.80.
The thickness of the sheet increases with Shields parameter. The distance and the energy flux are made
dimensionless by, respectively, D and ρ
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®ρ
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) g}ρ

s
]$/#. The Shields parameter is the distant

turbulent shear stress made dimensionless by D(ρ
s
®ρ

f
) g. (b) The dimensionless particle fluctuation

velocity through the sheet. The velocity is made dimensionless by [D(ρ
s
®ρ

f
) g}ρ

s
]"/#.

sometimes equipped with a cover. The particles were of two types : circular cylinders
3 mm in height and 3 mm in diameter with relative density of 1.27; and elliptic
cylinders 3.3 mm in height and elliptic axes 1.9 mm and 2.8 mm with relative density
of 1.14. They measured the thickness of the sheet flow and the mean velocity profile of
the fluid within and outside the sheet. They present their measurements for a range of
Shields parameters from 0.67 to 2.60.

Consequently, we focus on 3 mm diameter spheres with a relative density of 1.25;
then gW ¯ 196 cm s−# and, with µ

f
}ρ

f
¯ 0.01 cm# s−", R

f
¯ 230. We employ values of the

coefficient of restitution between 0.75 and 0.85 suggested by a comparison of the
predictions of the theory and the data measured in the experiments. These values are
consistent with calculated values of the effective coefficient of restitution (Jenkins &
Zhang 1997) based on the collision parameters measured for 3 mm acrylic spheres by
Foerester et al. (1994).

In carrying out the numerical integration of the equations given in the Appendix, we
employ a Runga–Kutta scheme with a step size of 0.0025 on the unit interval. Because
setting ν strictly equal to zero at z¯ 0 might result in the stress ratio being singular
there, ν at the top of the sheet is taken to be equal to 0.01.

Figures 1(a), 1(b), 2(a), and 2(b) show profiles of dimensionless energy flux,
fluctuation velocity, pressure, and concentration for the particle phase for values of the
Shields parameter of 0.75, 1.50 and 2.25 and a coefficient of restitution of 0.80.

The profiles of energy flux and fluctuation velocity are unique to this study of sheet
flow. As the Shields parameter increases, both the total weight of particles and the
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]"/#. (b) The Stokes numbers through the sheet (solid lines) ; the Stokes numbers for

equal collisional and viscous dissipation in low-Reynolds-number simple shear (dashed lines) ; and the
Stokes numbers corresponding to Bagnold numbers of 450 (open circles). The conditions are those
of figure 1.

fluctuation velocity at the bed increase; consequently, as indicated by equation (20), so
does the flux of fluctuation energy into the bed. At a definite height above the bed, the
energy flux goes to zero, with the approach to zero monotonic only for small Shields
parameters. As a consequence of imposing the boundary condition on the energy flux
at the top of the sheet, the fluctuation velocity attains a non-zero value there.

The particle pressure decreases monotonically with distance from the bed. Its value
at the bed is the dimensionless weight of the particles supported above a unit area of
the bed by their collisional interactions. At the lowest value of the Shields parameter,
the concentration profile is nearly linear, as observed by Shook et al. (1982) and later
assumed by Wilson (1984, 1987, 1988) to be generally true for sheet flows. However,
the concentration profiles at the highest Shields parameters deviate from linear and
exhibit a region of nearly constant concentration extending over a few particle
diameters.

Figures 3(a), 3(b), and 4(a) give the corresponding profiles of dimensionless particle
shear stress, particle mean velocity, and fluid mean velocity. Particle shear stress
decreases monotonically with height from a value nearly equal to the Shields
parameter.

Before comparing features of the predicted profiles with those measured in
experiments, we assess the extent to which the solutions that we have generated are
consistent with the assumptions that underlie the theory used to generate them. That
is, we seek to determine where in the sheet the exchange of momentum in collisions
dominates that associated with fluid and to obtain an indication of where collisional
dissipation exceeds viscous dissipation.
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We first introduce a dimensionless ratio B
g

of collisional stress to viscous stress,
called the Bagnold number, defined in terms of quantities bearing dimensions by

B
g
3

ρ
s
λ"/#D#

µ
f

du

dy
, (40)

where λ is the ‘ linear concentration’, defined so that D}λ is the average value of the
closest distance between the surfaces of neighbouring spheres. Here we relate λ to ν
through an expression for this average value derived by Torquato, Lu & Rubenstein
(1990) :

λ¯ 24G¯
12ν(2®ν)

(1®ν)$
, (41)

and use (10) to eliminate the derivative of the mean particle velocity from (40). The
result, written in terms of the non-dimensional fluctuation velocity and the fall
Reynolds number (30) is

B
g
¯ 5(6πG )"/#sR

f

F

E
w

S

P
. (42)

The Bagnold number is useful because in his experiments, Bagnold (1954) established
that for values of B

g
greater than 450, the momentum exchanged in collisions between

particles dominates that exchanged in the fluid interactions between them.
We next relate the Bagnold number to the Stokes number S

t
associated with the

shearing flow. In a simple shearing flow, S
t
is the product of the rate of shear and a

viscous relaxation time τ3m}3πDµ
f
, where m3πD$ρ

s
}6 is the mass of the particle.

Upon comparing the definitions of B
g

and S
t
, we have

S
t
¯

B
g

36(6G )"/#
. (43)

In a study of steady, simple shearing flows of spheres in a gas at low particle Reynolds
number, Sangani et al. (1996) obtained a criterion for when collisional dissipation
exceeds viscous dissipation. It is expressed in terms of the Stokes number by

S
t
&R

diss 915π

32

1

(1®e)

1

EG #
:"/# (44)

in which

R
diss

3 1
3

o2
ν"/#

135

64
ν ln ν11.26ν(1®5.1ν16.57ν#®21.77ν$)®G ln ε,

where ε is the separation of the spheres, expressed as a fraction of particle diameter, at
which the lubrication forces are cut off, taken here, in the case of a liquid, to be the
height of the asperities.

In figure 4(b), we show profiles of the Stokes number associated with the solutions
for Shields parameters of 0.75, 1.5 and 2.25 at a coefficient of restitution of 0.80 for ε¯
0.05. Also shown as broken curves are the critical Stokes number, given by the equality
in equation (44), and values of the Stokes number, indicated by open circles, that
correspond to Bagnold numbers equal to 450. Clearly the criterion for dissipation that
we employ is only marginally appropriate to the far more complicated finite particle
Reynolds number flow of the turbulent liquid, but taken together with the Bagnold
number, it does reinforce our assumption that the simple model captures the features
of the flow through much of the depth of the sheet and is in error only near its top.
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F 5. The measured power (dashed line), calculated power (open circles), measured coefficient
(solid line), and calculated coefficient (crosses) over a range of Shields parameters for 3 mm plastic
spheres in water. The coefficient of restitution is 0.80. The measured values are those of Sumer et al.
(1996).

We next compare the theoretical predictions to the experimental measurements.
Sumer et al. (1996) find that the fluid mean velocity profiles measured in the lower part
of the sheet are well represented by a relation between our non-dimensional quantities
of the form

u¯ (sS*)"/#byn, (45)

where n is very near 0.75 and b is a function of S* given by

b(S*)¯ 2.5 (S*)−!.(&. (46)

In figure 5 we show the values of n and b at different values S* that result from the best
fits of equation (45) to our fluid velocity profiles over the range of Shields parameters
from 0.5 to 2.5. The power is very close to that measured, but the coefficient is less,
particularly at the low Shields parameters. We suspect that our requiring that the
particle velocity gradient vanish at the top of the sheet may influence the details of this
fit, particularly at the smaller Shields parameters.

The upper portion of the profiles of mean fluid velocity deviate from the usual
logarithmic velocity profiles as a result of the momentum deficit associated with the
particles’ drag on the turbulent fluid. Sumer et al. (1996) show that their measured
profiles of fluid mean velocity through the upper part of the sheet and into the region
of clear fluid above it are well represented by a relation between the dimensionless
quantities of the form

u¯
(sS*)"/#

κ
ln 030(y®∆y)

k
s

1 , (47)

where ∆y and k
s
, the non-dimensional displacement height and roughness, respectively,

vary with S*. In order to obtain effective values for ∆y and k
s
, we fit equation (47) to

the upper 25% of our calculated fluid velocity profiles for e¯ 0.75, 0.80 and 0.85 over
the range of Shields parameter from 0.5 to 2.5. The resulting curves are plotted in figure
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F 6. (a) The calculated values of the dimensionless displacement height for 3 mm plastic
spheres in water at values of the coefficient of restitution of 0.75, 0.80 and 0.85 (solid lines), and the
measured values (open circles). (b) The calculated values of the dimensionless roughness (solid lines)
and the measured values (open circles). The displacement height and the roughness are made
dimensionless by D. The measured values are those of Sumer et al. (1996).

6(a) and 6(b) together with the experimental values in this range measured by Sumer
et al. (1996). The predicted values of the displacement height are in good agreement
with the measurements. The predicted values for the roughness are in crude agreement
over the initial range of Shields parameter, but vary with Shields parameter in a
different way and deviate significantly from the measured values for Shields parameters
above about 1.80. This may be an indication that turbulent suspension begins to play
an important role at this value of the Shields parameter.

In figure 7, we show the thickness of the sheet as a function of Shields parameter for
the three coefficients of restitution against the data of Sumer et al. (1996). The shape
of each curve is similar to the trend of the data, and the curve corresponding to e¯
0.75 falls very near the measurements over most of this range of Shields parameter.

A new feature introduced by the present study is the possible dependence of the
sediment transport upon the coefficient of restitution. In figure 8(a), we plot profiles of
the local volume flux, the product of the particle concentration and the particle velocity,
at a Shields parameter of 1.5 for e¯ 0.75, 0.80 and 0.85. The integral of each profile
through the depth of the sheet is the total non-dimensional volume flux V. In figure
8(b), we show V versus the Shields parameter for each of the three coefficients of
restitution. Each curve is very well represented in our dimensionless variables by an
expression of the form suggested by O’Brien & Rindlaub (1934) :

V¯ cs"/#(S*®S$
c
)m, (48)

where S$
c

is the critical dimensionless shear stress for the initiation of motion. In what
follows, we take S$

c
¯ 0.05 for plastic and quartz in water (Shields 1936) and S$

c
¯ 0.02

for quartz in air (Sarre 1987).
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F 7. The calculated values of the dimensionless thickness of the sheet as a function of Shields
parameters for the conditions of figure 6 (solid lines) and the measured values (open circles). At a
given Shields parameter, higher coefficients of restitution correspond to thicker sheets. The thickness
is made dimensionless by D. The measured values are those of Sumer et al. (1996).
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s
®ρ

f
) g}ρ

s
]"/#.



Collisional sheet flows of sediment 45

50

0 0.5 1.0 1.5 2.0 2.5

Shields parameter

Fa
ll

 p
ar

am
et

er

3.0

100

150

200

250

(a)(b)

F 9. Curves of fall parameter, R
f
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s
]"/#}µ

f
, versus the Shields parameter on

which the friction velocity equals the fall velocity (a) and on which the friction velocity equals 80%
of the fall velocity (b).

We find that m¯ 1.53³0.02 and that c is, roughly, a linearly increasing function of
e. The value of m is close to 1.5, the power that appears in the well-known formula of
Meyer-Peter & Mu$ ller (1948) and that calculated by Wilson (1966) based upon simpler
models of the sheet flow. Sumer et al. (1996) did not measure concentration profiles or
total volume fluxes for the collisional sheet flows involving the plastic particles.

Finally, we note that the calculated ratio of the particle shear stress to the particle
pressure at the base of the flow increases as either the Shields parameter increases or
the coefficient of restitution decreases. It varies, for example, from 0.35 to 0.65 over the
range of Shields parameters and coefficients of restitution in figure 6.

The question naturally arises about the extension of the theory to smaller, less
buoyant particles. As emphasized by Sumer et al. (1996), an important component of
the answer to this question is the magnitude of the fall velocity relative to the friction
velocity. When made dimensionless by [D(s®1) g]"/# rather than [D(s®1) g}s]"/#, the
fall velocity � of a single sphere is determined in terms of R

f
in the balance between fluid

drag and gravity in a steady fall :

3

10
�#

18.3

R
f

r�r¯ 1, (49)

or

2 r�r¯
61

R
f

(®191
40

3(61)#
R#

f:"/#* . (50)

The requirement that the fall velocity exceeds the friction velocity, expressed in terms
of � and the Shields parameter S*, is �& (S*)"/#. In figure 9 we show the curve of S*
versus R

f
on which the fall velocity equals the friction velocity and the curve on which

0.8�¯ (S*)"/#. To the left of these curves, collisional interactions are expected to
dominate turbulent suspension; between the curves, turbulent suspension is likely to
become increasingly important ; and to the right of the curves, turbulent suspension is
expected to dominate collisional interactions. We recall that R

f
¯ 230 for the plastic

spheres.
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F 10. (a) The particle concentration through the sheet for 0.02 mm quartz spheres in air at
Shields parameters of 0.5 and 1.5. The coefficient of restitution is 0.85. (b) The dimensionless particle
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3.2. Sand in air

The density of air relative to water is 1.2¬10−#, so for sand in air, s¯ 2200. The
kinematic viscosity, µ

f
}ρ

f
, for air is taken here to be equal to 0.15 cm# s−". Because of

the large value of the relative density, the numerical computation must be treated with
more delicacy. We find that it is not necessary to correct the turbulent viscosity for the
density stratification, but that we must treat the singularity in the turbulent velocity
profile in a smoother, more physical way. In this case, we introduce the molecular
viscosity into the relationship between the shear stress in the fluid and the fluid velocity
gradient. In terms of dimensional quantities,

S*®S¯ 0µf
ρ

f
κ#y#

dU

dy1
dU

dy
. (51)

Upon solving this for the velocity gradient and writing the result in the non-
dimensional variables over the unit interval of z, we have

U «¯
1®[1(2LR

f
)#κ#(1®z)#s(S*®S )]"/#

2LR
f
κ#(1®z)#

. (52)

We use this equation in place of equation (36).
We consider particles of sand 0.2 mm in diameter ; then R

f
¯ 27. We take e to be 0.85

and, respecting the condition on the fall velocity illustrated in figure 9, determine
solutions for Shields parameters between 0.5 and 1.5. Because these are conditions that
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correspond to a sandstorm, it seems worthwhile to first repeat Bagnold’s description
of such a storm (Bagnold 1973). He is careful to distinguish between dust and sand. In
an erosion desert, there is little free dust.

In such country the wind produces for the first hour or so a mist consisting of both dust
and sand. Later, although the wind shows no sign of slackening, the mist disappears. But
the sand continues to drive across the country as a thick low-flying cloud with a clearly
marked upper surface. The air above the sand cloud becomes clear, the sun shines again,
and people’s head and shoulders can often be seen projecting above the clouds as from
the waters of a swimming bath. Where the ground is composed of coarse grains, pebbles,
or large stones, the top of the sand cloud may be two meters above it, but it is usually
less. Where the surface consists of fine sand, such as that of a dune, the height of the sand
cloud is noticeably lower.

The bulk of the sand movement takes place considerably nearer the ground than the
visible top of the cloud. Evidence of this is given by the effects of the sand blast on posts
and rocks projecting from the ground; the erosion is greatest at ground level, and is
usually inappreciable at a height of 18 inches. Except in broken country, the sand cloud
seems to glide steadily over the desert like a moving carpet, and the wind is comparatively
gustless. When the wind drops the sand cloud disappears with it. This is a true sand
storm.

In figures 10(a), 10(b), 11(a), and 11(b), we show profiles of concentration, mean
particle velocity, local volume flux, and mean fluid velocity for S*¯ 0.5 and 1.5 that
correspond to a choice of volume fraction at the top of the sheet of 0.001. These seem
to us to be remarkably consistent with Bagnold’s description of a sandstorm. The
concentration is dilute above about fifty particle diameters, but because the particle
mean velocity increases so rapidly, the local volume flux is significant for a much
greater height. At a Shields parameter of 1.5 the thickness of the sheet is about 18.4 cm
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(7.2 in.). In this case, the fluid mean velocity at the top of the sheet is about 16 m s−"

(35 miles per hour).
At all values of the Shields parameter considered, the greatest local volume flux takes

place near, but not at, the bed. The local volume flux can be made to approach zero
at the top of the sheet, and the thickness of the sheet can be increased substantially, by
taking the volume fraction to be smaller ; however this results in there being a
significant fraction of the sheet in which the effects of viscosity on the fluctuations
cannot be ignored.

We have also calculated the total volume flux over a range of Shields parameter for
coefficients of restitution of 0.80, 0.85, 0.90 and fit these curves with polynomials of the
form (48). We find the power m is 1.79³0.05 and that the coefficient c is a linear
increasing function of e. However, we hasten to add that the power does depend upon
the value of the volume fraction that we assign to the top of the sheet. The experimental
observations of Bagnold (1936) and others are fit with an exponent near 1.5.

It is possible to consider bottom boundaries other than an erodible bed. For
example, boundary conditions for a bumpy impervious boundary, similar perhaps to
the surfaces composed of coarse grains, pebbles, or large stones mentioned by Bagnold,
have been formulated (e.g. Richman 1988). Because these involve slip of the particle
phase relative to the boundary, they incorporate a collisional mechanism for the
conversion of the mean velocity of the flow into fluctuation velocity. As a consequence,
such boundaries may serve as either sources or sinks of fluctuation energy, depending
on the rate of collisional dissipation relative to the rate of collisional production
associated with the slip. In any event, such boundaries dissipate far less energy than an
erodible boundary, so we expect that the thickness of the sheet flow above them will
be greater. However, because the hard, bumpy bed is impervious, it is not appropriate
for us to prescribe the volume fraction at its surface. Instead, we can prescribe the total
weight of particles above a unit area of the bed or, equivalently, the particle pressure.
In this event, the volume fraction at the surface of the bed is delivered as part of the
solution, and it could be much smaller than 0.55. We defer calculations involving other
than an erodible boundary to a later paper.

Finally, we must mention that Bagnold’s explanation of the particle dynamics in a
sand storm is different from ours. He imagines that the particle phase is so dilute that
collisions between particles are unlikely. Consequently, he focuses on collisions
between the particles and the bed. If the amount of particles above a hard, impervious
bed is limited and the strength of the wind is high enough, it seems likely that such a
flow will occur. In the context of how we would phrase the problem above a hard,
bumpy, impervious bed, this flow would be the rare gas limit.

4. Conclusion

We have formulated what we believe is the simplest model for a collisional sheet flow
that has the capacity to predict profiles of particle concentration and particle mean
velocity. Of necessity, the model incorporates a measure of the strength of the velocity
fluctuations of the grains. The weight of the particles is then balanced by the gradient
of the particle pressure associated with the strength of the collisional interactions.

The model that we have employed for the turbulent shear flow is crude, but it seems
to suffice. Momentum transfer in the fluid is dictated by the increase in size of the
turbulent eddies away from the wall, reduced in the case of a liquid by the local density
stratification, and a local momentum deficit associated with the drag of the particles on
the fluid is incorporated.
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The surface of the bed has been modelled as a relatively dense random aggregate of
particles that collide among themselves and with particles of the flow. The
concentration of particles is just large enough so that the bed is unable to flow. The bed
is erodible, dissipative, and supports the collisional shear and normal stresses imposed
upon it until their ratio becomes so large that it yields. Hard, bumpy boundaries,
impervious to the particles, with respect to which the particle phase may slip and
fluctuation energy might be generated could also be implemented in the model.

At the top of the sheet, the particle concentration, particle shear stress, and flux of
fluctuation energy have been assumed to vanish. The vanishing of the latter two is a
convenience. A more realistic model would incorporate the effect on the particle
velocity fluctuations of the viscous forces associated with both the fluid mean velocity
and the fluid turbulent velocity fluctuations. Consideration of momentum and energy
balances for both the particle and fluid fluctuations could then provide the link
between the bedload and the suspended load.

There are a number of other ways in which the present calculations could be
extended. Of most interest to sediment transport in the ocean is to consider unsteady
and, in particular, oscillatory flows. Some elements of such an extension are
straightforward, but each cycle of an oscillatory flow involves a portion of reversing
turbulent shear. Here the gradient in the particle pressure may be reduced substantially
and the vertical accelerations of the particles may become significant.

In any event, we believe that this analysis of a steady fully developed collisional sheet
places these and other problems in multiphase transport in an appropriate context, in
which the focus is placed on the strength of the particle velocity fluctuations.

This research was supported by the Coastal Sciences Program of the US Office of
Naval Research.

Appendix

We introduce the seven-dimensional vector q with components

q
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where i ranges from 1 to 7, and write the system in the form
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, s and e, an initial guess q(!)(z) is made and used to initiate an iteration

scheme in which the linear differential equation governing the nth iteration is
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where the components f
i,j

of the matrix ¡f are the partial derivatives of f
i
with respect

to q
j
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The boundary condition (39) is treated in a similar way:
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the derivative of h is evaluated at q(n−")

&
, and q

"
¯ 0.55 everywhere that it appears.

For each n, numerical solutions to five initial-value problems are obtained. The first,
q(n)
I

, is the solution to the inhomogeneous differential equation that satisfies the known
boundary conditions at z¯ 0 and assigns zero values to the unknown values,
q(n)
I

(0)¯ (0, 0, 0, 0, 0, 0, 0). The remaining four, q(n)
II

, q(n)
III
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, and q(n)
V
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homogeneous differential equation, obtained by setting g¯ 0, and the initial conditions
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q(n)

"
¯ 0.55, q(n)

$
¯ 0, q(n)

'
¯ 0. (A 14)

This leads to a system of five linear algebraic equations for the unknowns:

A

B

q(n−")

%
®

dh

dq
&

q(n−")

&

0

0.55

0

0

C

D

¯

A

B

dh

dq
&

0

0

®1

0

C

D

q(n)

&
 3

V

A=II

C
A

A

B

q(n−")
A%

q(n−")
A$

q(n−")
A"

q(n−")
A&

q(n−")
A'

C

D

. (A 15)

The solution q(n) is then used as the basis off the next iteration and the process is
carried out until the difference between any two successive iterations is as small as we
like.
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